敛散性的判别方法(怎么判断sinx的敛散性)
本文目录
判断级数收敛的八种方法
利用部分和数列判别法,
比较原则,
比式判别法,
根式判别法,
积分判别法,
以及拉贝判别法等。
对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。
两级数敛散性相同的条件
乘非零常数。
级数的数列中的各项同乘一个非零常数,不改变级数的敛散性。因此找到与待判级数通项的同阶的通项,二者敛散性相同。几何级数:-11,收敛,其余都发散。可以用比值判别法的,用根值判别法一定可以。反之未必。
广义积分敛散性判别定理
广义积分的敛散性判断是积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散。
广义积分的敛散性判断解析
反常积分的敛散判断本质上是极限的存在性与无穷小或无穷大的比阶问题。首先要记住两类反常积分的收敛尺度:对第一类无穷限而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;对第二类无界函数而言,当x→a时,f(x)必为无穷大,且无穷大的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
广义积分的几何意义:反常积分存在时的几何意义:函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。
发散函数和收敛函数的判断
对于一个实数或者复数数列,如果其部分和或部分积趋于无穷大,则称其为发散函数;如果其部分和或部分积趋于有限值,则称其为收敛函数。可以通过极限的定义或者级数的收敛性来判断一个函数的敛散性。
怎么判断sinx的敛散性
是收敛的。
sinx展开后是函数项级数,准确的说是幂级数,只有常数项级数可以直接谈收敛或者发散。sinx展开成x的幂级数后它的收敛半径是+∞,所以sinx在整条数轴上都是收敛的。
可以把sinx展开成x的幂级数,这时把x当作常数,发现这是交错级数,用绝对收敛的方法的话得到正项级数,这时用比值审敛法(达朗贝尔法)计算得到比值的极限为0,0<1,所以该级数是收敛的。
定义方式与数列收敛类似。柯西收敛准则关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。收敛的定义方式很好的体现了数学分析的精神实质。